照明基本概念:

人类利用眼睛将外界的光,经视神经转换成讯号传送至大脑,因此照明便成为人类日常生活中不可或缺的重要一环, 人类在拥有一双健全的眼睛的同时,也必须要有适当的灯光照明配合才能发挥其功能,因此适当的照明是非常重要 的。

在灯光照明不足的黑暗环境中,眼睛是无法清楚地辨识物体,但在过分照明明亮刺眼的光线之下也无法看清事物, 所以在不良的照明环境之下长期持续工作,不仅易导致眼睛疲劳造成近视,同时也会降低工作效率。随着社会的进 步,生活水准的升高,人类照明的要求也相对地提高,除了适当的亮度之外,更要求舒适愉快的气氛,因此在考虑 良好的照明时必先了解色温度、演色性与经济效率。

色温度(Color Temperature)

色温度是以绝对温度 K(Kelvin)来表示,乃是将一标准黑体(例如铁)加热,温度升高至某一程度时颜色开始由深红 \rightarrow 浅红 \rightarrow 橙黄 \rightarrow 白 \rightarrow 蓝白 \rightarrow 蓝,逐渐改变,利用这种光色变化的特性,某光源的光色与黑体的光色相同时,我们将 黑体当时的绝对温度称为该光源之色温度。(例如图 1、2、3、4)

色温度在 3000K 以下时,光色就开始有偏红的现象,给人一种温暖的感觉。色温度超过 5000K 时颜色侧偏向蓝光,给人是一种清凉的感觉。通常亚热带的人较喜欢 4000K 以上的色温度,而寒带的人较喜欢 4000K 以下的色温度。

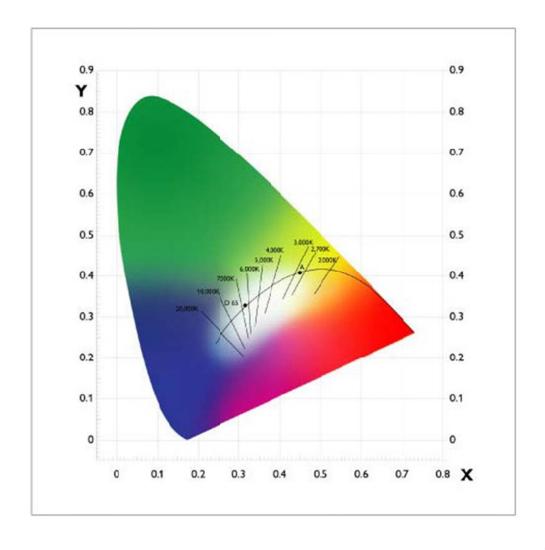
绝对温度 K(Kelvin)是 1848 年英国物理学家克尔文提出,也认为摄氏零下 273.16 度才是温度的起点,因此绝对温度的计算方式,就是摄氏零下 273.16 度在加上一般常用的摄氏温度,如人体常温为摄氏 36 度,也就是绝对温度 309 度。

色温 3000K

色温 5000K

1。色温度

2。黎明: 4000K



3。中午: 6500K

4.黄昏: 3000K

国际照明协会色温度表 C.I.E Chromaticity Diagram

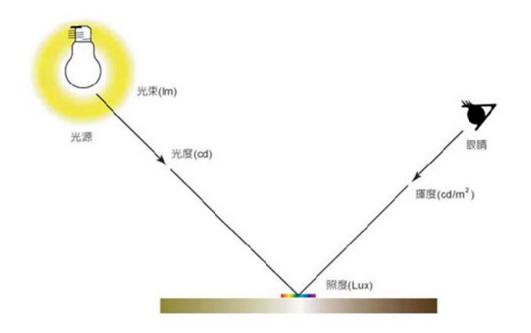
演色性 CRI(Color Rendering Index)

光源对物质颜色呈现的程度称为演色性 CRI(或 RA),也就是颜色逼真的程度,演色性高的光源对颜色的表现较好,我们所看到的颜色也就较接近自然原色,演色性低的光源对颜色的表现较差,我们所看到的颜色偏差也较大。为何会有演色性高低之情形发生? 其关键在于该光线之分光特性,可见光之波长在 380nm 至 760nm 之范围内,也就是我们在光谱中见到的红、橙、黄、绿、蓝、靛、紫的范围,如果光源所放射的光之中所含的各色光的比例和自然光接近,则我们眼睛所看到的颜色也就较为逼真。再好的装潢、摆设、艺术品、衣服等也会因选择不对的光源而失色。

演色性愈高, 色彩表现愈好

普通荧光灯 演色性 60

三波长自然色荧光灯 演色性 80



三波长自然色荧光灯 演色性 90

光的用语

名 称	符号	单 位	说 明	
光束(光通量) Luminous Flux	Φ	流明 1m (Lumen)	发光源每秒种所发出的量之总和,简单的说就是光量。	
光度 Luminous Intensity	I	7-17-5	光的强度,在某一特定方向角 内所放射光的量。	
照度 Illuminance	Е	,,,,	单位面积内所射入光的量,也就是光束除以面积(m2)所得到的值,用来表示某一场所的照明度。	
辉度 Luminance	L	nt cd/m2 Stibe cd/cm2	从某一方向所看到物体反射光线的强度。也就是说单位面积对某一方向反射的光之强度。照度是表示单位面积内射光的量。辉度 则是表示眼睛从某一方向所看到物体的反射光的强度。	
平均寿命	HR(时 间)		指一批灯泡点灯至百分之五十之数量损坏不亮时之时数。	

在同时考虑灯泡之损坏以及光束输出衰减之状况下,其综合光束 输出至一特定比例之时数。此比例在一般用于是外之光源为百分 之七十,用于室内之光源如日光灯则为百分之八十。

经济效率 (Economics)

光源的效率是以其起所发出的光的流明除以 其耗电量所得之值:

光源效率 (lm/W) = 流明 (lm)/耗电量 (W)

也就是每一瓦电力所发出光的量,其数值越高表示光源的效率愈高(如表一)。所以对于使用时间较长之场所,如办公室、走廊、道路、隧道等,其效率通常是一个重要的考虑因素。

种类	效率 (1m/W)
白炽灯泡	15
LED 灯泡	20
石英卤素灯	25
SL 省电型荧光灯泡	60
水银灯	65
普通荧光灯管	70
PL 型荧光灯管	85
PLC 型荧光灯管	85
石英复金属灯	90
三波长自然色省电灯管	96
高压钠气灯	130
低压钠气灯	200

(表一)

点灯方向

为发挥最佳照明效果,各产品均有正确安装方式,以确保产品之使用寿命及安全性。 各项点灯图示范例如右。

为 360 度任意点灯方向。

白色部分代表正常操作的点灯角度 黑色部分代表不正确之点灯角度,会导 致灯管不亮,并影响产品寿命(气体放 电灯泡亦会造成色偏现象)。